5,956,479

1

DEMAND BASED GENERATION OF
SYMBOLIC INFORMATION

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to computer aided
software engineering (CASE) and, more particularly, to
demand based generation of symbolic debugger information
which provides an interactive and dynamic environment for
computer program building and debugging. The invention
allows a programmer to debug their programs without
incurring the cost of generating symbolic information.
Debugger symbolic information refers to the information
that a program compiler communicates to the program
debugger. This information describes to the debugger how to
show the user a program’s variable values, variable types,
program counter, and stack backtrace. The costs of gener-
ating symbolic information include performance cost at
compile time, storage cost associated with the symbolic
information overhead, startup time for the debugger, vari-
able value and program location access time while
debugging, and linkage time associated with building the
information associated with symbolic debugging. Demand
based generation of symbolic information reduces the costs
by eliminating additional compilation overhead until
necessary, by removing additional storage requirements for
symbolic debugging data, by matching and retrieving source
to ensure correctness of debugging, and by enabling debug-
ging at all times.

2. Description of the Prior Art

Object oriented programming (OOP) is the preferred
environment for building user-friendly, intelligent computer
software. Key elements of OOP are data encapsulation,
inheritance and polymorphism. These elements may be used
to generate a graphical user interface (GUI), typically char-
acterized by a windowing environment having icons, mouse
cursors and menus. While these three key elements are
common to OOP languages, most OOP languages imple-
ment the three key elements differently.

Examples of OOP languages are Smalltalk and C++ .
Smalltalk is actually more than a language; it might more
accurately be characterized as a programming environment.
Smalltalk was developed in the Learning Research Group at
Xerox’s Palo Alto Research Center (PARC) in the early
1970s. In Smalltalk, a message is sent to an object to
evaluate the object itself. Messages perform a task similar to
that of function calls in conventional programming lan-
guages. The programmer does not need to be concerned with
the type of data; rather, the programmer need only be
concerned with creating the right order of a message and
using the right message. C++ was developed by Bjarne
Stroustrup at the AT&T Bell Laboratories in 1983 as an
extension of C. The key concept of C++ is class, which is a
user-defined type. Classes provide object oriented program-
ming features. C++ modules are compatible with C modules
and can be linked freely so that existing C libraries may be
used with C++ programs.

The complete process of running a computer program
involves translation of the source code written by the
programmer to machine executable form, referred to as
object code, and then execution of the object code. The
process of translation is performed by an interpreter or a
compiler. In the case of an interpreter, the translation is made
at the time the program is run, whereas in the case of a
compiler, the translation is made and stored as object code
prior to running the program. That is, in the usual compile

10

15

20

25

30

35

40

45

50

55

60

65

2

and execute system, the two phases of translation and
execution are separate, the compilation being done only
once. In an interpretive system, such as the Smalltalk
interpreter, the two phases are performed in sequence. An
interpreter is required for Smalltalk since the nature of that
programming environment does not permit designation of
specific registers or address space until an object is imple-
mented.

A compiler comprises three parts; the lexical analyzer, the
syntax analyzer, and the code generator. The input to the
lexical analyzer is a sequence of characters representing a
high-level language program. The lexical analyzer divides
this sequence into a sequence of tokens that are input to the
syntax analyzer. The syntax analyzer divides the tokens into
instructions and, using a database of grammatical rules,
determines whether or not each instruction is grammatically
correct. If not, error messages are produced. If correct, the
instruction is decomposed into a sequence of basic instruc-
tions that are transferred to the code generator to produce a
low-level language. The code generator is itself typically
divided into three parts; intermediate code generation, code
optimization, and code generation. Basically, the code gen-
erator accepts the output from the syntax analyzer and
generates the machine language code.

To aid in the development of software, incremental com-
pilers have been developed in which the compiler generates
code for a statement or a group of statements as received,
independent of the code generated later for other statements,
in a batch processing operation. The advantage of incremen-
tal compiling is that code may be compiled and tested for
parts of a program as it is written, rather than requiring the
debugging process to be postponed until the entire program
has been written. However, even traditional incremental
compilers must reprocess a complete module each time.

Optimizing compilers produce highly optimized object
code which, in many cases, makes debugging at the source
level more difficult than with a non-optimizing compiler.
The problem lies in the fact that although a routine will be
compiled to give the proper answer, the exact way it
computes that answer may be significantly different from
that described in the source code. Some things that the
optimizing compiler may do include eliminating code or
variables known not to affect the final result, moving invari-
ant code out of loops, combining common code, reusing
registers allocated to variables when the variable is no
longer needed, etc. Thus, mapping from source to object
code and vice versa can be difficult given some of these
optimizations. Inspecting the values of variables can be
difficult since the value of the variable may not always be
available at any location within the routine. Modifying the
values of variables in optimized code is especially difficult,
if not impossible. Unless specifically declared as volatile,
the compiler “remembers” values assigned to variables and
may use the “known” value later in the code without
rereading the variable. A change in that value could,
therefore, produce erroneous program results.

Once a program has been compiled and linked, it is
executed and then debugged. Because logical errors, also
known as “bugs,” are introduced by programmers, they will
want to detect and understand the errors, using a program
debugger. After correcting the errors and recompiling, they
use the debugger to confirm that those errors have been
eliminated. Other uses for the debugger include inspecting
executing programs in order to understand their operation,
monitoring memory usage, instrumenting and testing
programs, verifying the correctness of program translation
by the compiler, verifying the correctness of operation of



